

LIMITADOR DE PAR CON RODILLOS

HASTA 12.000 Nm DE PAR Y DE 120 mm DE DIÁMETRO INTERNO

ED. 07/202

DSR - limitador de par con rodillos: introducción

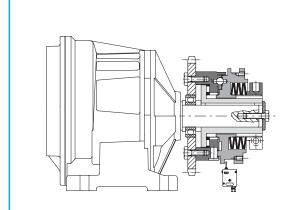
- Regulación precisa del par mediante una virola radial equilibrada.
- Innovador sistema de ajuste con "cota H" para calibrar el dispositivo de manera inmediata. 0
- 0 Reaccionamiento en fase equidistante o a 360°.
- Posibilidad de modelo de bolas (DSS) para una mejor sensibilidad en caso de picos de par. 0
- Intervención inmediata para obtener una mejor respuesta que la de los sistemas electrónicos.
- Sin mantenimiento para garantizar una elevada fiabilidad a lo largo del tiempo.
- 0 Adecuado para su uso en entornos húmedos y oleosos.

BAJO PEDIDO

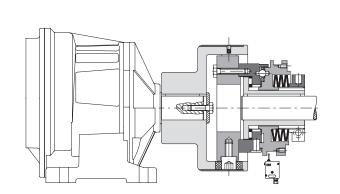
- 0 Con órgano de transmisión mecanizado y montado (corona, polea, engranaje...).
- 0 Posibilidad de combinar un microinterruptor o un proximity para detener el motor.
- 0 Posibilidad de conexión con orificio acabado y hueco o con ensamblador.
- 0 Posibilidad de ejecución con reaccionamientos en fase personalizada a 36°, 45°, 60°, 90°, 120°.

Acoplamiento de seguridad con transmisión del movimiento mediante rodillos que asegura la completa desactivación cuando se alcanza el par de ajuste y una rápida detención de la transmisión gracias al microinterruptor EM1. Ideal para transmitir pares elevados con la máxima fiabilidad y reducidas dimensiones.

PRINCIPALES APLICACIONES

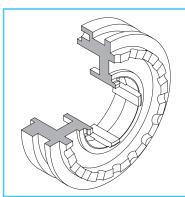

- 0 Máquinas para embalaje y envolvedoras.
- 0 Etiquetadoras.
- 0 Embotelladoras.
- 0 Transportadores aéreos.

VENTAJAS Y BENEFICIOS

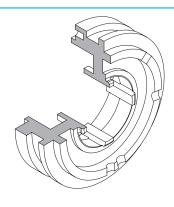

- Proteger el motorreductor contra los bloqueos provocados por cuerpos extraños.
- Proteger los envases contra el aplastamiento y la deformación.
- Proteger los órganos para el tratamiento del producto en caso de acumulación.
- Mantener las fases entre la parte motriz y la parte conducida tras una sobrecarga.

	DSR: modelo básico para conexión de acoplamientos.	de 2,5 a 12000 Nm 120 mm de diámetro interno máx.	Pág. 25
	/FS: adecuado para el montaje de órganos de transmisión simples.	de 2,5 a 12000 Nm 120 mm de diámetro interno máx.	Pág. 26
4))),	+ GTR: conexión con acoplamiento rígido a la torsión.	de 2,5 a 2800 Nm 90 mm de diámetro interno máx.	Pág. 27
	+ GAS: conexión con acoplamiento flexible con desalineaciones elevadas.	de 2,5 a 9600 Nm 129 mm de diámetro interno máx.	Pág. 27
	+ GEC: conexión con acoplamiento flexible con desalineaciones reducidas.	de 2,5 a 12000 Nm 180 mm de diámetro interno máx.	Pág. 28

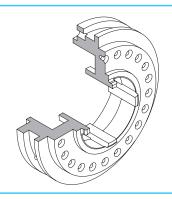
EJEMPLO DE MONTAJE


Modelo DSR (o DSS) con órgano sostenido por un cojinete para transmisiones con ejes paralelos.

Modelo **DSR** (o DSS) con acoplamiento flexible compacto **GEC** para transmisiones con ejes coaxiales.


DSR - limitador de par con rodillos: modelos

DSR: limitador de par con rodillos para una transmisión estable incluso con pares elevados en presencia de vibraciones


- Transmisión del movimiento mediante rodillos.
- Reaccionamiento automático equidistante.
- O Elevados pares de ajuste con dimensiones reducidas.
- Mismo par de intervención en ambos sentidos de rotación.
- Rango de par 10-12.000 Nm; orificio máx. ø120 mm.

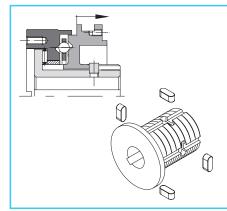
DSR/F: limitador de par con rodillos con reaccionamiento en fase para una transmisión estable incluso con pares elevados

- Transmisión del movimiento mediante rodillos.
- Excelente disposición de los rodillos (patentada) para una perfecta estabilidad.
- Reaccionamiento automático en fase a 360° o con fases personalizadas (36°, 45°, 60°, 90°, 120°...).
- Elevados pares de ajuste con dimensiones reducidas.
- Rango de par 10-12.000 Nm; orificio máx. ø120 mm.

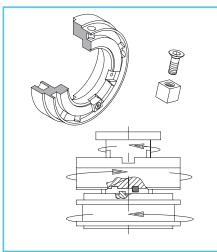
Los dispositivos de seguridad ComInTec con fase se caracterizan por una distribución exclusiva de los rodillos que representa una solución matemáticamente excelente para obtener un apoyo seguro, equilibrado en todas las posiciones posibles por encima en el arco de 360°. Cuando el limitador se desactiva, siempre hay al menos tres rodillos equidistantes que se apoyan sobre la superficie de rodamiento.

DSS: limitador de par de bolas para una excelente sensibilidad en casos de variación imprevista del par (BAJO PEDIDO)

- O Transmisión del movimiento mediante bolas con las mismas dimensiones del modelo DSR.
- O Elevada sensibilidad con intervención inmediata apenas varía el par.
- Reaccionamiento automático equidistante.
- O Mismo par de intervención en ambos sentidos de rotación.
- Rango de par 2,5-2.050 Nm; orificio máx. ø68 mm.


NÚMERO DE ACCIONAMIENTOS A 360°

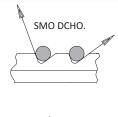
Modelo				Tam	naño			
ivioueio	0,56	1,90	2.110	3.130	4.160	5.194	6.240	7.280
DSR	18	18	16	16	16	24	24	24
DSR/F	1	1 1		1	1	1	1	1
DSS	24 22		20	20	22	15	-	-

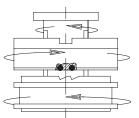

DSR - limitador de par con rodillos: versiones

.../TAS: limitador de par con topes

- Dispositivo en agarre constante.
- 0 Movimiento mínimo de la base móvil para obtener una señal eléctrica de detención de la transmisión.
- Transmisión del movimiento mediante rodillos DSR/TAS (o bolas DSS/TAS).
- Adecuado para movimientos y cargas verticales.
- Rango de par 2,5-2.800 Nm; orificio máx. ø68 mm.

Los topes, montados en el soporte central como se ilustra en la figura, sirven para limitar la carrera axial del dispositivo y evitar su desactivación completa a pesar de tener una señal eléctrica de detención y, así, mantener una conexión estable de la transmisión.

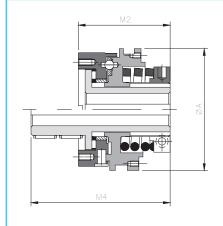



limitador de par con tope mecánico para no perder la fase entre la parte motriz y la .../AM: conducida

- Taco diseñado (patentado) para resistir más de 4 veces el par máximo.
- 345° de rotación para permitir la anulación de las fuerzas de inercia antes de la detención.
- 0 Mantenimiento de la fase con reaccionamiento en la misma posición que la desactivación.
- 0 Elevados pares de ajuste con dimensiones reducidas.
- Rango de par 10-2.800 Nm; orificio máx. ø68 mm.

Para que nuestros técnicos puedan determinar el sentido de rotación correcto "IZQUIERDO" o bien "DERECHO" para la aplicación, necesitamos un dibujo con la siguiente información:

- esquema de montaje
- sentidos de rotación
- procedencia del movimiento
- dirección en la que se necesita la detención.



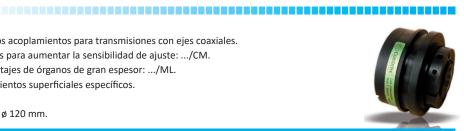
.../SMO: limitador de par con valores de desactivación diferentes en los dos sentidos de rotación

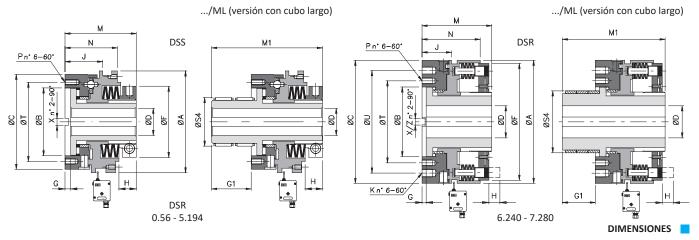
- Pares de intervención diferentes en los dos sentidos de rotación (sistema patentado).
- 0 Posibilidad de versión bloqueada en uno de los dos sentidos de rotación.
- 0 Transmisión del movimiento mediante rodillos (DSR SMO) con reaccionamiento automático.
- Disponible con reaccionamiento equidistante o con fases angulares personalizadas (DSR/F/SMO).
- Rango de par 10-12.000 Nm; orificio máx. ø120 mm.

Para que nuestros técnicos puedan determinar el sentido de rotación correcto "IZQUIERDO" o bien "DERECHO" para la aplicación, necesitamos un dibujo con la siguiente información:

- esquema de montaje
- sentidos de rotación
- procedencia del movimiento
- dirección del par alto o bajo.

.../CM: versión par mínimo


Ejecución con muelles helicoidales para una mayor carrera del rango de par y, en consecuencia, una regulación más precisa durante la fase de ajuste.


Tamaña	Modelo	Par	[Nm]	^	M2	N44
Tamaño	IVIOGEIO	Muelle ST	Muelle SQ	A	IVIZ	M4
0,56	DSS DSR	0.8 - 10,9 1.9 - 25,6	-	56	64,5	92
1,90	DSS DSR	2 - 40 8 - 75	5 - 90 8 - 145	90	75	110
2.110	DSS DSR	9 - 50 12 - 90	12 -100 25 - 190	110	91	129
3.130	DSS DSR	12 -135 30 -300	24 - 190 50 - 320	130	110	157

FU IBERICA

DSR - limitador de par con rodillos: datos técnicos

- Modelo básico con posibilidad de conexión a los acoplamientos para transmisiones con ejes coaxiales.
- 0 Posibilidad de montaje con muelles helicoidales para aumentar la sensibilidad de ajuste: .../CM.
- 0 Disponible en versión con cubo largo para montajes de órganos de gran espesor: .../ML.
- 0 Disponible en versión anticorrosión con tratamientos superficiales específicos.
- 0 Disponible con anillo de aviso de intervención.
- 0 Rango de par: 2,5 - 12000 Nm; orificio máximo ø 120 mm.

						D H7												_				
Tamaño	Mod.	Α	B H7	С	bruto	m	ıáx.	F	G	G1	J	К	М	M1	N	Р	S4 l	1/	Т	Х	U	z
					bruto		/ML										Casq.	Coj.				
0,56	DSS DSR	56	41	56	-	20	20*	42	3,8	27,5	21 20	-	46	73,5	32 31,5	M5	33	33	48	6x3	-	6x3
1,90	DSS DSR	90	60	84	-	28	28*	63	5	35	33,5 27,5	-	63	98	47 45	M5	45	43	70	6x3	-	6x3
2.110	DSS DSR	110	78	104	-	40	38	82	6	38	39 36,5	-	76	114	54 52	M6	60	55	89	8x3,5	-	8x3,5
3.130	DSS DSR	130	90,5	124	20	50	50*	104	6	47	47 45	-	88	135	65 64	M8	72	70	105	10x4	-	10x4
4.160	DSS DSR	160	105	148	25	58	58*	128	8	53	58,5 54,5	-	107	160	76,5	M10	85	83	125	12x4	-	12x4
5.194	DSS DSR	194	120,5	176	28	68	68*	157	6,5	57,5	65 64,5		124,5	182	88 88,5	M12	98	98	155	14x4,6	-	14x4,6
6.240	DSR	240	136	240	50	90	_ 90	227	8	▲ 64	54,5	M16	141	205	113,5	M12	118	-	160	18x5,1	200	16x5,1
7.280	DSR	280	198	280	50	120	120	262,5	8	▲ 82	82	-	200	282	159	M20	1 68	-	230	20x6,1	-	20x6,1

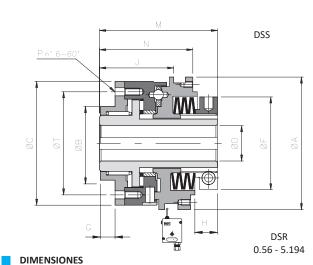
^{*} Orificio acabado con diámetro máximo con hueco rebajado según la norma UNI 7510.

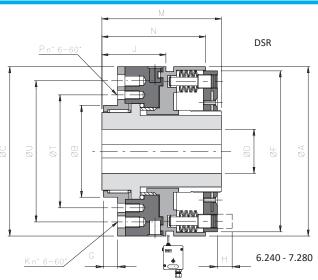
Tamaño	Modelo		Par [Nm]			Inercia [kgm	n²]	Velocidad máx.	Pesc	[kg]
Idilidilo	iviodelo	T0	T1	T2	Lado brida	Lado virola	Lado virola/ML	[rpm]	DSR	/ML
0,56	DSS DSR	2.5 - 9,5 10 - 20	5.5 - 17,5 14 - 37	15 - 32 30 - 75	0,00008	0,00010	0,00011	4500 1500	0,6	0,7
1,90	DSS DSR	20 - 49 50 - 105	25 - 65 85 - 145	35 - 115 130 - 265	0,00059	0,00059 0,00106 0,00111		3000 1000	1,9	2,4
2.110	DSS DSR	19 - 72 60 - 150	55 - 160 142 - 330	80 - 290 275 - 620	0,00174	0,00268	0,00281	2500 800	3,6	4,4
3.130	DSS DSR	50 - 225 115 - 370	70 - 300 200 - 510	130 - 540 430 - 900	0,00441	0,00639	0,00686	2000 700	6,0	7,3
4.160	DSS DSR	-	150 - 690 330 - 1040	300 - 1280 750 - 1800	0,01067	0,01797	0,01891	1600 550	10,7	13,2
5.194	DSS DSR	-	360 - 1040 540 - 1620	460 - 2050 1050 - 2800	0,02873	0,04239	0,04453	1300 400	18,2	21,6
6.240	DSR	1600 - 3800	2000 - 8000	-	0,10306	0,16930	0,17371	300	30,6	▲ 38,5
7.280	DSR	2000 - 5600	2500 - 12000	-	0,09313	0,36412	0,39456	200	79	▲ 91,8

Bajo pedido

NOTAS

- Los pesos se refieren al limitador de par (DSR o DSS) con orificio bruto y las inercias, al limitador de par (DSS o DSR) con orificio máx.
- Para microinterruptor EM1 o EM2 y sensor inductivo PRX, véase pág. 73




.../FS - versión con brida de soporte: datos técnicos

Modelo básico con brida para transmisiones con ejes paralelos.

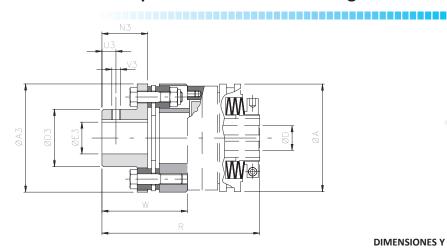
- 0 Posibilidad de montaje con muelles helicoidales para aumentar la sensibilidad de ajuste: .../FS/CM.
- 0 Disponible en versión anticorrosión con tratamientos superficiales específicos.
- 0 Disponible con brida para dimensiones axiales reducidas: .../FIR.
- 0 Disponible con brida para conexión de acoplamientos cardan: .../FAV.
- Rango de par: 2,5 12000 Nm; orificio máximo ø 120 mm.

$\overline{}$		-	

T~	N 4l - l -		В		D	H7	F			14		N.		т	
Tamaño	Modelo	А	h7	С	bruto	máx.		G	J	K	M	N	Р	_	U
0,56	DSS DSR	56	38	56	-	20*	42	7,5	34,5 33	-	59	45 44,5	M5	48	-
1,90	DSS DSR	90	50	84	-	28*	63	9,5	50,5 44,5	-	80	64 62	M5	70	-
2.110	DSS DSR	110	60	104	-	38	82	11,5	56 53,5	1	93	71 69	M6	89	-
3.130	DSS DSR	130	80	124	20	50*	104	11,5	65 63	-	106	83 82	M8	105	-
4.160	DSS DSR	160	100	148	25	58*	128	15,5	83,5 79,5	-	132	101,5	M10	125	-
5.194	DSS DSR	194	120	176	28	68*	157	17,5	92,5 93	1	152	115,5 116	M12	155	-
6.240	DSR	240	130	240	50	90	227	18	83,5	M16	170	142,5	M12	160	200
7.280	DSR	280	190	280	50	120	262,5	30	130	-	248	207	M20	230	-

CARACTERÍSTICAS TÉCNICAS

* Orificio suministrado con diámetro máximo con hueco rebajado según la norma UNI 7510.

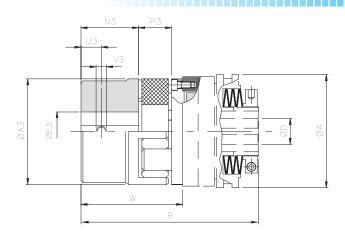

Tamaño	Modelo		Par [Nm]		Inercia	[kgm²]	Velocidad máx.	Doso (ka)
Talliano	Modelo	то	T1	T2	Lado brida	Lado virola	[rpm]	Peso [kg]
0,56	DSS DSR	2.5 - 9,5 10 - 20	5.5 - 17,5 14 - 37	15 - 32 30 - 75	0,00012	0,00010	4500 1500	0,7
1,90	DSS DSR	20 - 49 50 - 105	25 - 65 85 - 145	35 - 115 130 - 265	0,00087	0,00109	3000 1000	2,4
2.110	DSS DSR	19 - 72 60 - 150	55 - 160 142 - 330	80 - 290 275 - 620	0,00234	0,00275	2500 800	4,4
3.130	DSS DSR	50 - 225 115 - 370	70 - 300 200 - 510	130 - 540 430 - 900	0,00575	0,00660	2000 700	7,1
4.160	DSS DSR	-	150 - 690 330 - 1040	300 - 1280 750 - 1800	0,01447	0,01848	1600 550	13
5.194	DSS DSR	-	360 - 1040 540 - 1620	460 - 2050 1050 - 2800	0,03664	0,04352	1300 400	21,6
6.240	DSR	1600 - 3800	2000 - 8000	-	0,13005	0,17123	300	37,5
7.280	DSR	2000 - 5600	2500 - 12000	-	0,18058	0,38306	200	90,5

NOTAS

- Los pesos se refieren al limitador de par (.../ FS) con orificio bruto y las inercias, al limitador de par (.../ FS) con orificio máx.
- Para microinterruptor EM1 o EM2 y sensor inductivo PRX, véase pág. 73

FU IBERICA TRANSMISIÓN DE POTENCIA

... + GTR - modelo con acoplamiento de membrana rígido a la torsión: datos técnicos



DIMENSIONES Y CARACTERÍSTICAS TÉCNICAS

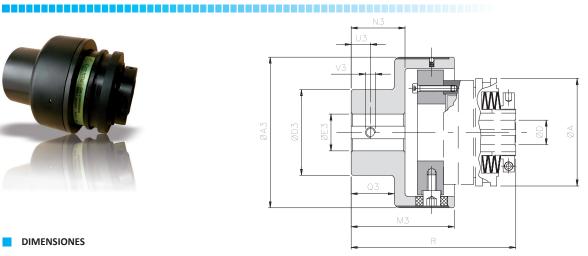
Tam	año	Par [Nm]			F2 117					D	H7			Des	alineacion	ies	ez •10³]	Velocidad	máx. [rpm]	
DSS DSR	GTR	Nom	Máx.	А3	D3	E3 H7 máx.	N3	U3	V3	А	bruto	máx.	R	w	Angular α [°]	Axial X [mm]	Radial K [mm]	Rigid [Nm/rad	DSS	DSR	Peso [kg]
0,56	0	60	120	78	45	32	29	10	M5	56	-	20	105	59	1°	0,7		80	4500	1500	1,4
1,90	2	150	300	92	53	38	42	10	M5	90	-	28	137	74	0° 45′	0,9		156	3000	1000	2,1
2.110	3	300	600	112	65	45	46	15	M8	110	-	40	161	85	0° 45′	1,2		415	2500	800	3,9
3.130	4	700	1400	136	75	52	56	15	M8	130	20	50	186	98	0° 45′	1,4	0	970	2000	700	5,8
4.160	5	1100	2200	162	92	65	66	20	M8	160	25	58	223	116,5	0° 45′	1,6		1846	1600	550	10,8
5.194	7	2600	5200	206	130	90	92	20	M10	194	28	68	270	145,5	0° 45′	2,2		3511	1300	400	21,9

... + GAS - modelo con acoplamiento flexible de estrella: datos técnicos

DIMENSIONES Y CARACTERÍSTICAS TÉCNICAS

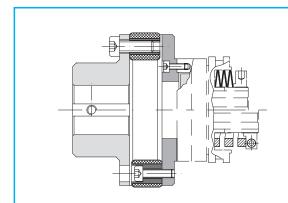
	Tamaño		Par	[Nm]		E3						DH	17			De	salineacione	es	Velocida [rpi		
DSS DSR	G.A	AS	Nom	Máx.	А3	H7 máx.	N3	P3	U3	V3	А	bruto	máx.	R	w	Angular α [°]	Axial X [mm]	Radial K [mm]	DSS	DSR	Peso [kg]
	Std	▲ mín.																			
0,56	0 (24)	00 (19)	60	120	55	35	30	18	10	M5	56	-	20	103	57		-0,5/+1,4	0,22	4500	1500	0,8
1,90	2 (38)	0 (24)	325	650	80	48	45	24	15	M8	90	-	28	141	78		-0,7/+1,8	0,28	3000	1000	3,7
2.110	4 (48)	1 (28)	525	1050	105	62	56	28	20	M8	110	-	40	171	95		-1/+2,1	0,36	2500	800	5,2
3.130	5 (55)	2 (38)	685	1370	120	74	65	30	20	M10	130	20	50	198	110	10 10/	-1/+2,2	0,38	2000	700	9,1
4.160	7 (74)	4 (48)	1465	2930	160	95	85	40	25	M10	160	25	58	249	142	1° 18′	-1,5/+3	0,48	1600	550	17,9
5.194	8 (90)	5 (55)	3600	7200	200	110	100	45	30	M12	194	28	68	288,5	164		-1,5/+3,4	0,50	1300	400	29,5
6.240	9 (100)	-	4800	9800	225	120	110	50	30	M12	240	50	90	326	185		-1,5/+3,8	0,52	-	300	-
7.280	10 (110)	-	7000	14000	255	130	120	55	33	M16	280	50	120	418	212		-2/+4,2	0,55	-	200	-

Bajo pedido


NOTAS

- Los datos indicados se refieren solo a la aplicación (GTR GAS); para los datos del limitador de par, véase pág. 25.
- Los pesos se refieren solo a la aplicación (GTR- GAS) con orificio bruto.
- Para microinterruptor EM1 o EM2 y sensor inductivo PRX, véase pág. 73

... + GEC - modelo con acoplamiento flexible compacto: datos técnicos


DIMENSIONES

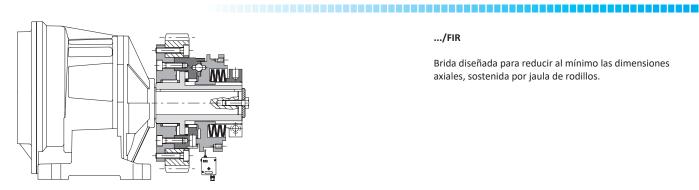
Ī	Tama	ño	Par	[Nm]	A3	D3	E3 H	7	M3	N3	Q3	U3	V3	А	D H7	7	- R
ſ	DSS - DSR	GEC	Nom	Máx.	AS	טס	bruto	máx.	IVIS	INS	Ų3	03	V5	A	bruto	máx.	
	0,56	0	70	110	78	50	10	28	63,5	32	28	8	M4	56	-	20	100,5
	1,90	1	280	420	108	70	12	38	89	49	44	12	M6	90	-	28	142
	2.110	2	570	860	130	80	15	45	111	65	59	15	M8	110	-	40	177
	3.130	3	980	1500	161	100	15	60	140	85	77	15	M8	130	20	50	215
	4.160	4	2340	3600	206	120	20	70	168	105	97	20	M10	160	25	58	261
	5.194	5	3880	5800	239	135	30	80	201	130	120	20	M10	194	28	68	309,5
١.	6.240	6	15000	20000	315	215	40	150	260	165	150	25	M12	240	50	90	381
, [7.280	7	15000	17500	364	240	40	180	310	205	185	25	M12	280	50	120	485

CARACTERÍSTICAS TÉCNICAS

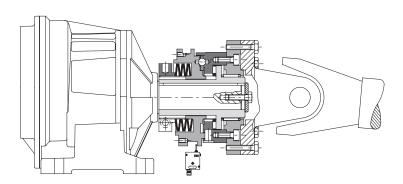
Tamaño		Desalineaciones						Velocidad máx.		
DSS DSR	GEC	Angular α [°]		Axial X [mm]		Radial K [mm]		[rpm]		Peso [kg]
		continuo	intermitente	continuo	intermitente	continuo	intermitente	DSS	DSR	
0,56	0	1°	1° 30′	± 0,7	± 1,5	0,5	0,7	4500	1500	1,2
1,90	1	0° 48′	1°	± 0,7	± 1,5	0,5	0,7	3000	1000	3,5
2.110	2	0° 36′	0° 48′	± 0,7	± 1,5	0,6	0,7	2500	800	6,2
3.130	3	0° 30′	0° 42′	± 0,8	± 1,6	0,6	0,8	2000	700	11,5
4.160	4	0° 24′	0° 30′	± 0,8	± 1,6	0,6	0,8	1600	550	20,8
5.194	5	0° 24′	0° 30′	± 0,8	± 1,6	0,6	0,8	1300	400	32
6.240	6	0° 24′	0° 30′	± 0,8	± 1,6	0,6	0,8	-	300	91,3
7.280	7	0° 24′	0° 30′	± 0,8	± 1,6	0,6	0,8	-	200	173,9

OTROS TIPOS DE ACOPLAMIENTO BAJO PEDIDO

Modelo **DSR** (o DSS) con acoplamiento flexible **GF** para absorber elevadas vibraciones torsionales y para una rápida sustitución del elemento elástico.

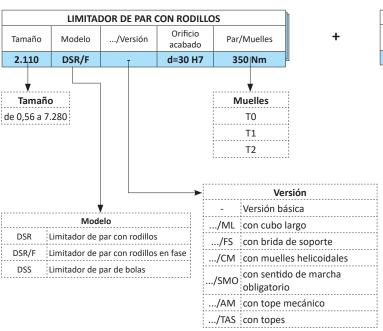

NOTAS

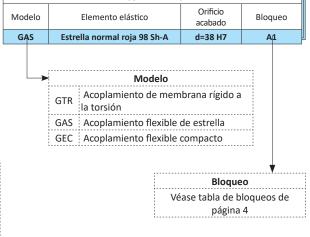
Bajo pedido


- Los datos indicados se refieren solo a la aplicación (GEC); para los datos del limitador de par, véase pág. 25.
- Los pesos se refieren solo a la aplicación (GEC) con orificio bruto.
- Para microinterruptor EM1 o EM2 y sensor inductivo PRX, véase pág. 73

DSR - limitador de par con rodillos: versiones bajo pedido

Brida diseñada para reducir al mínimo las dimensiones axiales, sostenida por jaula de rodillos.


.../FAV


Brida diseñada y preparada para conectar ejes cardan, sostenida por jaula de rodillos.

DSR - limitador de par con rodillos: información adicional

EJEMPLO DE PEDIDO

ACOPLAMIENTO